2024年11月4日月曜日

Landslide Susceptibility Map using ML その5

Full article: Near real-time spatial prediction of earthquake-induced landslides: A novel interpretable self-supervised learning method

こちらは transformer を利用されています。
pre-training 後に fine-tuning を実施したところ、他の手法より AUC がよかったよ、という報告です。

transformer ではグローバルな発生データを活用する pre-training が可能であり、データ量の多さを活かして高度な特徴学習ができそうです。それをローカルの発生・非発生データで fine-tuning することで、未知のデータに対する汎化性能を保ちつつ、ローカルな特性を捉えたモデルを構築できます。ローカルのために世界のデータを利用するという報告は"その2"で書き残しました。が、この場合は XGBoost ですので pre-training の概念がないですし、学習時に利用するにしても相応の非発生データが必要になります。

利用する特徴量を決めておいて、世界でデータを整備しておけば、事前学習済みデータとして配布・利用できそうです。幸か不幸か国内はこれからですので、特徴量に使える国内データの整備が進むとありがたいですね。


2024年11月3日日曜日

Landslide Susceptibility Map using ML その4

Full article: An integrated neural network method for landslide susceptibility assessment based on time-series InSAR deformation dynamic features 

時系列 DInSAR を特徴量として使用されています。変動量はSBASでもチェックをされているようです。SARというと、つい地震前後の差分をイメージしてしまいますが、地震前の変動量を利用することは言われて初めて気づいた重要なポイントですね。

24 stages of time-series InSAR cumulative deformation information are taken every 96 days per quarter. 

国内で Landslide Sasceptibility Map を産総研さんの研究以外で聞いたことがありません。それを作成するための機械学習も土木分野では浸透していません。あっても SVM とか Random Forest などクラシカルな手法が使われているように感じます。が、この分野の研究では複雑な特徴に対応するため、または精度向上のために DNN 等が利用されています。

Based on traditional linear statistical analysis, machine learning methods stand out by virtue of their ability to examine large amounts of data independently. Machine learning methods, such as random forest (RF) (Dou et al. Citation2019) and logistic regression (Zhang et al. Citation2019), have been extensively used in LSA. However, under the requirements of complex scenes or high precision, traditional machine learning algorithms cannot meet actual demand (He et al. Citation2021a; Zhao et al. Citation2022). Building on the neural networks present in machine learning, the neural network method effectively predicts complex nonlinear dynamic systems. It has been widely and successfully introduced into the field of LSA, including the convolutional neural network (CNN) (Wang, Fang, and Hong Citation2019; Gao et al. Citation2023a), recurrent neural network (RNN) and deep belief network (DBN) (Chen et al. Citation2020). The convolutional layer of CNN can extract multidimensional features from the input images and has good performance (Hakim et al. Citation2022). Gated recurrent unit (GRU) network of RNN variant has good performance in processing sequence data (Zhao et al. Citation2022). With the complexity of the environment, when faced with a limited sample, the ensemble learning model is also widely used in the LSA. For example, Wang et al. (Citation2022) conducted the LSA based on the XGBoost ensemble learning model. Lv et al. (Citation2022) combined CNN, DBN and ResNet models with the ensemble learning techniques of Stacking, Bagging and Boosting to generate the LSA.

日本は2ステップ遅れている状況です。せめて LSM 作成のためのデータは整備していただきたいものです。そうすると土木に携わっていない機械学習エンジニアが参加しやすく、多様な目的のマップが作成されるようになるでしょう。その時々の、最新のアーキテクチャで。