AI要約
背景
地すべりリスク評価において、専門家の主観的判断による重み付けが一般的だが、バイアスや不確実性が問題。
機械学習を用いた統計的アプローチが発展しているが、重みの不確実性の定量化が不十分。
既存ツール(LSM Tool Pack、LSAT PM等)は存在するが、不確実性分析機能が限定的。手法
1.ジニ不純度に基づく特徴量重要度(重み)の計算
1)ランダムフォレスト内の各決定木において、ある特徴量で分岐する際のジニ不純度の減少量を計算
2)全ての木について、各特徴量による不純度減少量を合計
3)各特徴量の重要度 = その特徴量による不純度減少の合計 / 全特徴量による不純度減少の総和2.不確実性分析の手法
20,000回の反復計算を実施
各反復で地すべり・非地すべり地点の80%をランダムサンプリング
accuracy 0.75以上のモデルのみの特徴量重要度(feature importance)を記録
重要度の範囲を集計し、限られたインベントリデータに起因する不確実性を定量化3.LSI(Landslide Susceptibility Index)の算出
ある地点が地すべりに対してどれだけ脆弱であるかを数値化した指標
PyLandslideでは、複数の要因を重み付けして統合することで、空間的な地すべり発生リスクを評価LSI = Σ(Wi × Si)
LSI: 地すべり感受性指数
Wi: 要因iの重み(weight)
Si: 要因iのスコア層(score layer)
n: 考慮する要因の総数スコア層(Si)の算出方法
連続データ型要因(降水量、傾斜、道路距離など):
分位数による分類: データを11個の分位数(quantile)に分類
地すべり件数の計算: 各クラス内で発生した過去の地すべり件数を集計降水量・傾斜: そのクラス以下で発生した地すべりの累積パーセンテージ
道路距離: そのクラス以上で発生した地すべりの累積パーセンテージ
降水量が17~80mmのクラス: 80mm以下で発生した地すべりの累積割合がスコア
道路距離が143~286mのクラス: 143m以上の距離で発生した地すべりの割合がスコアカテゴリカルデータ型要因(土地被覆、岩相など):
各カテゴリ内で発生した地すべり件数を計算
各カテゴリのスコア = そのカテゴリ内で発生した地すべりのパーセンテージ標準化
全ての要因について、スコアを0~100の範囲に線形正規化:
0: その要因クラスの最低寄与度
100: その要因クラスの最高寄与度LSI分類基準
Very low: 0 ≤ LSI ≤ 20
Low: 20 < LSI ≤ 40
Moderate: 40 < LSI ≤ 60
High: 60 < LSI ≤ 80
Extremely high: 80 < LSI感度分析の実施回数
歴史的降水条件について200回のランダムな重みの抽出を実施
9つの気候予測について各200回ずつ実施
内訳:
歴史的降水条件(1981-2023年):200回
将来予測(2041-2050年):9つの気候シナリオ × 各200回 = 1,800回
合計:200 + 1,800 = 2,000回9つの気候シナリオ:
3つの気候モデル(ACCESS-ESM1-5、MRI-ESM2-0、UKESM1-0-LL)
3つの共有社会経済経路(SSP126、SSP245、SSP585)
3モデル × 3シナリオ = 9つの組み合わせ
この結果、LSIも範囲として表現される結果
イタリアにおける6要因の重要度(重み)
道路からの距離: 0.43〜0.52(中央値0.47)
・最も影響が強い
・過去の地すべりの85%が道路から143m以内で発生傾斜: 0.16〜0.23(中央値0.20)
・2番目に重要
・過去の地すべりの70%が傾斜9%以上の地域で発生土地被覆: 0.10〜0.13(中央値0.12)
地質: 0.07〜0.09(中央値0.08)
降水量: 0.05〜0.07(中央値0.06)
TWI(地形湿潤指数): 0.05〜0.08(中央値0.06)モデル精度
訓練データでの全体精度: 0.80〜0.82
テストデータでの全体精度: 0.75〜0.80
過学習は認められないlSI評価
歴史的期間(1981-2023):
「極めて高い」: 7.8〜9.5%
「高い」: 23.8〜26.8%将来予測(2041-2050):
「極めて高い」: 5.3〜7.6%(減少傾向)
「高い」: 21.5〜28.3%イタリア北西部と南部で大幅に低下
北東部で増加考察
人為的要因(道路)が最大の影響
道路建設に伴う斜面切土や人間活動が斜面安定性を低下不確実性の重要性
重みの不確実性範囲を考慮することで、より堅牢な意思決定が可能
インフラ投資計画において、重みの不確実性を考慮した堅牢な地すべりリスク評価が可能研究の限界
気候変動の影響評価
降水量変化のみを考慮、温度・山火事・植生変化は未考慮入力データの精度
ITALICAデータベースの位置精度は最大5.6kmの誤差
より高精度なデータが望ましい閾値の設定
accuracy0.75の閾値は本研究で設定したが、絶対的な基準ではない
ユーザーのニーズに応じて調整可能
国外では、LSM作成において機械学習を用いるアプローチは既に一般化していると言えますが、そこに不確実性評価が入っています。といっても、重要度の示し得る範囲を利用しているだけですから、新たなツールは不要です。
この文献のLSIの定義が正解かどうかはわかりませんが、少なくとも確率を導入する方針については同意です。