2022年6月11日土曜日

地下水~地表流まで

・層流 : i=au
・層流から乱流への遷移状態、乱流 : i=au+bu2
・乱流 : i=bu2

1. 層流(粒径小、速度低)

Darcy:\begin{align*}-\mathrm{\nabla h}=\frac{1}{k}\boldsymbol{u}=a\boldsymbol{u}\end{align*} h=p/(ρg)より\begin{align*}-\mathrm{\nabla p}=\rho g\frac{1}{k}\boldsymbol{u}=\rho ga\boldsymbol{u}=\alpha\boldsymbol{u}\end{align*}
Darcy-Kozeny Carman:
\begin{align*}a=\frac{1}{k}=\frac{180\nu\left(1-n_e\right)^2}{g{\mathrm{\Phi}^2n}_e^3d^2}\end{align*} ν=μ/ρより\begin{align*}\alpha=\frac{\rho g}{k}=\frac{180\mu\left(1-n_e\right)^2}{{\mathrm{\Phi}^2n}_e^3d^2}\end{align*}


2. 層流~乱流への遷移状態、乱流(粒径大、高速)

Forchheimer:
\begin{align*}-\mathrm{\nabla h}=a\boldsymbol{u}+b\left|\boldsymbol{u}\right|\boldsymbol{u}\end{align*}
Ergun(1952)
\begin{align*}a=\frac{1}{k}=\frac{150v\left(1-n_e\right)^2}{gn_e^3d^2}
 b=\frac{1.75\left(1-n_e\right)}{gn_e^3d}\end{align*}

Kadlec and Knight(1996):角ばった粒子に適用。
\begin{align*}a=\frac{1}{k}=\frac{255v\left(1-n_e\right)}{gn_e^{3.7}d^2}
 b=\frac{2\left(1-n_e\right)}{gn_e^3d}\end{align*}


3.乱流

Manning:
\begin{align*}u=\frac{1}{n}R^\frac{2}{3}I^\frac{1}{2}\end{align*}\begin{align*}I=\frac{n^2}{R^\frac{4}{3}}u^2=bu^2\end{align*}
h:水頭(m)
p:ポテンシャル(Pa)
ρ:密度(kg/m3)
k:透水係数(m/s)
u:速度(m/s)
α:係数(s/m)
β:係数(s2/m2)
Φ:球形度(0~1、球=1)
d:有効粒径(m)
μ:粘性係数(Pa・s)
ν:動粘性係数(m2/s)=μ/ρ
ne:間隙率
g:重力加速度(m/s2)
n:マニングの粗度係数(m−1/3・s)
R:径深(m)
I:勾配


OpenFOAM
https://openfoamwiki.net/index.php/DarcyForchheimer
https://phreeqc.blogspot.com/2022/02/darcy-forchheimer-model.html?m=0
\begin{align*}-\mathrm{\nabla h}=a\boldsymbol{u}+b\left|\boldsymbol{u}\right|\boldsymbol{u}\end{align*}\begin{align*}-\mathrm{\nabla p}=\rho ga\boldsymbol{u}+\rho gb\left|\boldsymbol{u}\right|\boldsymbol{u}=\alpha\boldsymbol{u}+\beta\left|\boldsymbol{u}\right|\boldsymbol{u}=\mu D\boldsymbol{u}+\frac{1}{2}\rho F\left|\boldsymbol{u}\right|\boldsymbol{u}
\end{align*}
Darcy:
\begin{align*}\alpha=\frac{\rho g}{k}=\mu D\end{align*}\begin{align*}D=\frac{\rho g}{k\mu}\end{align*}\begin{align*}F=0\end{align*}
Darcy-Kozeny Carman:
\begin{align*}\alpha=\frac{\rho g}{k}=\frac{180\mu\left(1-n_e\right)^2}{{\mathrm{\Phi}^2n}_e^3d^2}=\mu D\end{align*}\begin{align*}D=\frac{180\left(1-n_e\right)^2}{{\mathrm{\Phi}^2n}_e^3d^2}\end{align*}\begin{align*}F=0\end{align*}
Forchheimer-Ergun:
\begin{align*}\alpha=\rho ga=\frac{\rho g}{k}=\frac{150\mu\left(1-n_e\right)^2}{n_e^3d^2}=\mu D\end{align*}\begin{align*}D=\frac{150\left(1-n_e\right)^2}{n_e^3d^2}\end{align*}\begin{align*}\beta=\rho gb=\frac{1.75\rho\left(1-n_e\right)}{n_e^3d}=\frac{1}{2}\rho F\end{align*}\begin{align*}F=\frac{3.5\left(1-n_e\right)}{n_e^3d}\end{align*}

PersianSPHでは、式と係数を選択。ソース内で係数変更可。
OpenFOAMでは、D,F 入力で表現。

0 件のコメント:

コメントを投稿