2026年2月6日金曜日

文献:Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach

 Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach - Berti - 2012 - Journal of Geophysical Research: Earth Surface - Wiley Online Library

AI要約+α

背景
従来の地すべり予測手法は、地すべりを引き起こした降雨イベントのみを考慮し、決定論的閾値を提供してきた。しかし、斜面安定性は降雨だけでなく、多数の要因の組み合わせで決まるため、同じ降雨条件でも異なる結果(地すべり発生/非発生)が生じる。経験的モデル:降雨強度-継続時間(ID)閾値が一般的だが、不確実性の定量化が不十分である。

研究の対象地域
イタリア・エミリア=ロマーニャ州の山岳地域(12,000 km²)
1939年以降の4,000件以上の地すべり履歴データ
176箇所の雨量計による日降水量データ


手法
1. ベイズの基本手法(1次元解析)
P(A|B) = [P(B|A) × P(A)] / P(B)
P(A|B): 事後確率 - 降雨Bが発生したときに地すべりAが起こる確率(求めたい値)
P(B|A): 尤度 - 地すべりが発生したときに降雨Bが観測される確率
P(A): 事前確率 - 降雨に関係なく地すべりが発生する確率
P(B): 周辺確率 - 地すべりに関係なく降雨Bが観測される確率

実際の計算では、以下のように相対度数で近似:
P(A) ≈ NA / NR  (地すべり発生数 / 全降雨イベント数)
P(B) ≈ NB / NR  (降雨Bの発生数 / 全降雨イベント数)
P(B|A) ≈ N(B|A) / NA  (降雨Bで発生した地すべり数 / 全地すべり数)P
(A|B) ≈ N(B|A) / NB

一変量例(強度 I>40 mm/日)
・事前 landslide 確率:P(A)=5/20=0.25
・強度大の割合:P(B)=P(I>40)=9/20=0.45
・発生時の強度大割合(尤度):P(B|A)=4/5=0.8

→ P(A|I>40)=P(B|A)·P(A)/P(B)=0.8·0.25/0.45≃0.44

降雨B発生時の地すべり確率は44%である。これは尤度P(B|A)=80%とは異なることに注意が必要。事前確率と周辺確率を考慮する必要がある。

2. 2次元ベイズ解析
2つの変数B(降雨強度I)とC(降雨継続時間D)を考慮:
P(A|B,C) = [P(B,C|A) × P(A)] / P(B,C)
ここで、P(B,C)は2変数の同時確率(ある強度と継続時間の組み合わせが観測される確率)を表す。

各セルでの確率計算
二変量例(I>50 mm/day かつ D<=1 day)
・事前 landslide 確率:P(A) = 5/20 = 0.25
・降雨条件を満たす割合:P(B,C) = P(I,D) = 4/20 = 0.20
・発生時の当該領域割合(尤度):全地すべり5件中、この条件で発生2件
   P(B,C|A) = P(I,D|A) = 2/5 = 0.40

→ P(A|I>50, D≤1)= P(A|B,C) = [P(B,C|A) × P(A)] / P(B,C) =0.40·0.25/0.20=0.50

I-D平面全体の確率分布ヒストグラムを作成。
強度と継続時間の相互作用効果を把握。
確率の空間分布パターンを視覚化。
高リスク領域の明確な識別。


結果
1次元ベイズ解析の結果
有意な変数:総降雨量E、継続時間D、平均強度I
P(B|A)とP(B)の分布が明確に異なる
P(A|B)が事前確率P(A)=0.005を大きく上回る
特に降雨強度Iが最も有意:I>100mm/dayでP(A|I)=0.28

非有意な変数:先行降雨AE14, AE30
P(B|A) ≈ P(B)
P(A|B) ≈ P(A)

研究地域では先行降雨は地すべり発生と相関が低い。
降雨の激しさ(総量、継続時間、強度)とともに地すべり確率が増加。
ただし、極端な値では確率が減少する傾向(サンプルサイズの問題と定義バイアスによる)。

2次元ベイズ解析の結果
特定のI-D値で確率が急激に増加。これはシステムの状態の根本的変化、物理的閾値の存在を示唆。不確実性を含めた警報システムの構築に有用。


考察

1. ベイズ手法の利点
統計的厳密性:事前確率と周辺確率を考慮:尤度P(B|A)だけでなく、降雨の頻度P(B)と地すべり発生率P(A)を組み込む。
認知バイアスの回避:人間の直感的判断は事前確率を無視しがち(「80%の地すべりがI>50で発生」≠「I>50で地すべり確率80%」)。
不確実性の定量化:0〜1の連続値で確率を表現、決定論的手法の曖昧性(「閾値超過時に何が起こるか?」)を解消、信頼区間により推定の信頼性を評価

2. 先行降雨の非有意性
一般に細粒土壌では先行降雨が斜面安定性に重要とされるが、本研究では相関が低い。研究地域の地すべりは主にイベント降雨に対する急速な水文応答が支配的。60%の地すべりが降雨終了時またはその直後に発生。
深層地すべりでも、長期的な要因よりも短期的な降雨イベントが引き金となる。

3. 物理的閾値の示唆
I-D平面の特定領域で地すべり確率が急激に上昇。これはシステムの状態変化(安定→不安定)を示唆。
確率的手法であっても、背後に物理的メカニズム(臨界間隙水圧など)が存在。確率分布のパターンから、真の物理的閾値の存在を推測可能。

4. 方法論的課題と解決策
多発地すべりの扱い
方針:同一降雨による複数地すべりは1イベントとしてカウント。
理由:P(A) = NA/NR > 1を避け、統計的整合性を保つ。

バイアスへの対応
問題:誘因降雨は地すべり発生日で打ち切られるが、非誘因降雨は降雨終了まで継続。
影響:極端な長継続時間での確率推定に影響。
緩和:信頼区間の提示、データの60%が降雨終了時に発生することで影響を軽減。

Landslide発生降雨をベイズ手法で評価した少し古い文献です。基本的には、国内で研究されている降雨数ベースの評価と変わりません。
国内では短期雨量と土壌雨量指数の2軸で評価されます。スネーク曲線を書いてピークで評価したりするのですが、原点から離れるにつれてレアな雨(P(B,C) ≒0)となり、確率が極端に高くなります。これ、補正したいですよね。

0 件のコメント:

コメントを投稿